Brackish Groundwater: Perspectives on Potentially Favorable Development Areas & Deep Brine Injection

Governor's Water Augmentation Council

Desalination Committee

Leslie T. Katz, P.G. Montgomery & Associates

www.elmontgomery.com May 15, 2017

Why Look at Brackish GW in Arizona?

- Largest unallocated water resource
- More than 600 million AF of recoverable brackish groundwater in storage
- Almost 100 times current total annual AZ water use
- Desalination is proven technology and economical under certain circumstances
- Brine disposal via deep injection may be feasible and protective in some hydrogeologic settings

USGS 2017 – US Brackish Groundwater Regions

USGS 2017 – AZ Brackish Groundwater

Maximum TDS in Upper 50 - 500 Feet of Aquifer

2008 AZ Brackish GW Study Scope

- Identify, quantify, and characterize brackish groundwater reserves using existing data sets
- Evaluate areas based on established set of criteria
- Select areas for further study based on degree to which criteria are fulfilled and absence of fatal flaws
 - Focus on potential to replace or augment CAP supplies
- Identify data gaps
- Make recommendations for future investigations in favorable areas

2008 Brackish GW Study Ranking Criteria

- Water quality
 - 1,000 10,000 mg/L TDS (~1,600 17,000 uS/cm)
 - Lower concentrations of constituents that make RO expensive
 - Lack of naturally-occurring or human-caused contaminants not removed with RO
- Sustainability
 - Ability to supply up to 10,000 AFY
 - Sufficient groundwater in storage above 1,200 feet
- Economic feasibility
 - Depth to water not excessive
 - Adequate well yields
 - Brine injection potential
- Environmental factors
 - No anticipated subsidence impacts
 - No adverse impacts to existing users

M&A 2008 – Brackish Groundwater in Arizona

Electrical Conductivity (USGS Data)

EXPLANATION

ELECTRICAL CONDUCTIVITY (Estimated TDS Equivalent)

- 0 1,600 μS/cm (0 1,000 mg/L)
- 1,601 5,000 μS/cm (1,001 3,000 mg/L)
- 5,001 8,000 μS/cm (3,001 5,000 mg/L)
- 8,001 17,000 μS/cm (5,001 10,000 mg/L)
- > 17,000 μS/cm (>10,000 mg/L)
 - Interstate Highway
 - CAP Canal

Brackish Groundwater Area Ranking

Basin	Sub-basin or Area	Estimated Desalination Potential	Fatal Flaws		
WEST SALT RIVER VALLEY	Buckeye	Most promising	None		
GILA BEND BASIN	Gila Bend	Most promising	None		
YUMA	Yuma Mesa and Yuma Valley	Most promising	Existing desalting plant		
LOWER SANTA CRUZ	Picacho-Eloy	Most promising	None		
LITTLE COLORADO RIVER	Winslow-Leupp	Most promising	None		
WILLCOX BASIN	Willcox Playa	Most promising	Brackish storage unknown		
COL. RVER-HOOVER TO IMPERIAL					
DAMS	Parker	Potentially promising	Possibly Indian water rights		
LITTLE COLORADO RIVER	Concho-Petrified National Forest	Potentially promising	None		
GILA-PAINTED ROCK TO TEXAS HILL	Painted Rock Reservoir to Texas Hill	Potentially promising	Small groundwater storage		
GILA-TEXAS HILL TO DOME	Wellton-Mohawk	Potentially promising	Surface water particulates; other uses		
HARQUAHALA PLAINS	Harquahala	Potentially promising	Generally low TDS		
LITTLE COLORADO RIVER	Holbrook-Joseph City	Potentially promising	None		
LITTLE COLORADO RIVER	Hopi Reservation	Potentially promising	Depth to water, excessive salinity		
HUALAPAI VALLEY	Red Lake	Potentially promising	Volume of brackish groundwater unknown		
LOWER HASSAYAMPA	Tonopah Desert/Centennial Wash	Potentially promising	Low TDS		
LOWER SAN PEDRO	San Manuel-Winkleman	Potentially promising	Small well yields and storage		
RANEGRAS PLAIN (RAN)	Ranegras Plain	Potentially promising	Low TDS		
SAFFORD BASIN	Gila Valley	Potentially promising	None		
LITTLE COLORADO RIVER	Cameron-Wupatki N.M.	Potentially promising	None		
SAFFORD BASIN	San Simon	Potentially promising	None		
LITTLE COLORADO RIVER	St. Johns-Springerville	Potentially promising	None		
TUCSON AMA	Avra Valley	Less promising	Mostly low TDS		
BIG SANDY VALLEY	Big Sandy	Less promising	Low TDS, small yield		
DOUGLAS BASIN	Douglas	Less promising	Low TDS		
DUNCAN BASIN	Duncan Valley	Less promising	Low TDS		
UPPER SAN PEDRO	Sierra Vista	Less promising	Low TDS, base flow protection		
TUCSON AMA	Tucson	Less promising	Low TDS (?)		
MIDDLE VERDE RIVER	Camp Verde	Less promising	Small well yields and storage		
VIRGIN RIVER	Littlefield	Less promising	Small storage		
WATERMAN WASH	Rainbow Valley	Less promising	Low TDS, small storage		
WESTERN MEXICAN DRAIN	Ajo	Less promising	Low TDS, small well yields and storage		

Most Promising & Potentially Promising Brackish Groundwater Areas

			Available Groundwater		Range	Well Yields	Depth to Water (feet,		Salinity		
Basin	Area	Potential	Storage (AF)	(m	g/L)	(gpm)	bls)	Disposal		Subsidence	CAP Interest
AVECT CALT DIVED									Irrigation		D 1 645
WEST SALT RIVER		Most	20 000 000			500 2 500	.20		and		Replace CAP
VALLEY	Buckeye	promising	20,000,000	Low	High	500-2,500	<20	Evaporation	effluent	None	use
									Irrigation		Solar power,
		Most							and	Little or	replace CAP
GILA BEND BASIN	Gila Bend	promising	25,000,000	1,000	5,000	300-4,000	75-200	Evaporation	evaporites	none	use
											Augment
Υι	'uma Mesa and	Most							Mostly		Colorado
YUMA	Yuma Valley	promising	49,000,000	900	5,000	2,000-5,000	20-70	Evaporation	irrigation	None	River supply
									Bedded		
LOWER SANTA		Most						Evaporation	halite and		Near CAP
CRUZ	Picacho-Eloy	promising	24,000,000	<1,000	4,000	1,000-3,000	300 500	or injection	anhydrite	Existing	canal
											Navajo water
											rights,
LITTLE COLORADO		Most	16,000,000					Nearby	Bedded		municipal,
RIVER W	Winslow-Leupp	promising	(brackish)	1,500	5,000	300-1,000	50-400	injection	halite		power
									Evaporites		
									near playa		Sierra Vista
		Most	20,000,000						and		supply,
WILLCOX BASIN \	Willcox Playa	promising	(brackish)	1,500	>10,000	1,000-2,000	40-300	Evaporation	irrigation	Existing	power
Ø		Potentially									Near CAP
RANEGRAS PLAIN R	Ranegras Plain	promising	20,000,000	1,000	>50,000	100-3,000	30-300	Evaporation		Potential	canal
									Evaporites		
		Potentially						Nearby	and		
SAFFORD BASIN	Gila Valley	promising	35,000,000	400	4,000	500-2,000	100-500	injection (?)	irrigation		None
LITTLE COLORADO	Cameron-	Potentially						Possible	Bedded		
	Wupatki N.M.	promising	6-10 million	400	64,000	500-1,000	200-800	injection	halite	None	Little or none
%		Potentially			,,,,,,		11.000	, 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
SAFFORD BASIN	San Simon	promising	30,000,000	300	9,000	500-2,000	30-150	Evaporation	Irrigation	Existing	None
LITTLE COLORADO	St. Johns-	Potentially			,	,		,	Evaporites	J	
	Springerville	•	20,000,000 (?)	1 500	25,000	500-2,000	50-150	Evaporation		None	Little or none

Areas for Further Study

- Buckeye Area
- Gila Bend Basin
- Yuma Mesa and Yuma Valley
- Picacho Basin
- Winslow-Leupp Area (Little Colorado River Basin)
- Willcox Playa Area (Willcox Basin)

Areas for Further Investigation

- Buckeye Area
- Gila Bend Basin
- Yuma Mesa / Yuma Valley
- Picacho Basin
- Winslow-Leupp Area
- Willcox Playa Area

EC in Buckeye Area

ELECTRICAL CONDUCTIVITY (Estimated TDS Equivalent)

VVELI		(leet)

- 0 100
- 101 300
- 301 500
- 501 1,000
- 1,001 5,000

Well Depth Unknown

- 0 1,600 µS/cm (0 1,000 mg/L)
- 1,601 5,000 µS/cm (1,001 3,000 mg/L)
- 5,001 8,000 µS/cm (3,001 5,000 mg/L)
- 8,001 17,000 µS/cm (5,001 10,000 mg/L)
- > 17,000 µS/cm (>10,000 mg/L)

Buckeye Area Pros / Cons

Pros

- Large area of groundwater in optimal TDS range
- Coincides with water logged area
- Current and anticipate demand for fresh water supplies
- Multiple sources of TDS

- Future land use changes may affect brackish supply
- Groundwater chemistry (Ca, Mg) may pose challenges for desal
- Potential presence of pesticides and pharmaceuticals
- Brine disposal may be problematic

EXPLANATION

WELL DEPTH (feet)

- 0 100
- △ 101 300
- 301 500
- ♦ 501 1,000
- ⊕ 1,001 5,000
- ∇ Well Depth Unknown

ELECTRICAL CONDUCTIVITY (Estimated TDS Equivalent)

- 0 1,600 μS/cm (0 1,000 mg/L)
- 1,601 5,000 µS/cm (1,001 3,000 mg/L)
- 5,001 8,000 μS/cm (3,001 5,000 mg/L)
- 8,001 17,000 µS/cm (5,001 10,000 mg/L)
- > 17,000 μS/cm (>10,000 mg/L)

Gila Bend Area Pros / Cons

Pros

- Large volume of groundwater in storage with TDS concentrations in optimal range
- Water quality very consistent laterally/vertically
- Low Ca concentrations
- Recharge from runoff events and wastewater flows
- Irrigation demand and potential demand for solar power plant

- Potential presence of pesticides and pharmaceuticals
- Brine disposal may be problematic

EC in Yuma Mesa / Yuma Valley

EXPLANATION

WELL DEPTH (feet)

- 0 100
- Δ 101 300
- □ 301 500
- ⊕ 1,001 5,000
- ∇ Well Depth Unknown

ELECTRICAL CONDUCTIVITY (Estimated TDS Equivalent)

- 0 1,600 μS/cm (0 1,000 mg/L)
- 1,601 5,000 µS/cm (1,001 3,000 mg/L)
- 5,001 8,000 µS/cm (3,001 5,000 mg/L)
- 8,001 17,000 μS/cm (5,001 10,000 mg/L)
- > 17,000 µS/cm (>10,000 mg/L)

Yuma Valley /Mesa Area Pros / Cons

Pros

- Long-term, sustainable supply of brackish groundwater
- Pumping could partially mitigate water logging
- Anticipated long-term demand for agricultural supplies

- Administration of Colorado River accounting surface during drought could be problematic
- Recent water quality data is lacking and can't rule-out issues for desal
- Brine disposal may be problematic

EC in Picacho Basin

EXPLANATION

WELL DEPTH (feet)

0 - 100

101 - 300

□ 301 - 500

∇ Well Depth Unknown

ELECTRICAL CONDUCTIVITY (Estimated TDS Equivalent)

- 0 1,600 μS/cm (0 1,000 mg/L)
- 1,601 5,000 μS/cm (1,001 3,000 mg/L)
- 5,001 8,000 μS/cm (3,001 5,000 mg/L)
- 8,001 17,000 µS/cm (5,001 10,000 mg/L)
- > 17,000 µS/cm (>10,000 mg/L)

Picacho Basin Pros / Cons

Pros

- Long-term, sustainable supply of brackish groundwater
- Anticipated long-term demand for agricultural supplies, particularly during CAP shortages
- Deep injection may be feasible

- Recharge of imported CAP water could decrease TDS over time
- Documented subsidence and fissures
- Issues with permitting of deep brine injection

TDS in Winslow – Leupp Area

Winslow-Leupp Area Pros / Cons

Pros

- Significant supply of brackish groundwater
- Good data in some areas from recent testing
- Potential demand from Flagstaff and tribes
- Deep brine disposal potentially feasible

- Hydrogeologic and water quality conditions are variable
- Water quality may deteriorate and/or change over time
- Issues with permitting of deep brine disposal

Deep Brine Injection Opportunities/Challenges

- All subsurface water currently regulated as a drinking water aquifer in AZ
- APP process already encompasses injection wells
- Current structure provides potential pathways
 - Aquifer declassification
 - Application of existing regulatory structure
 - Use of narrative standards
 - Non-degradation demonstration
 - Protection of existing and foreseeable uses

Deep Brine Injection Opportunities/Challenges

- Permitting and implementation of deep brine injection will require:
 - Robust site conceptual model
 - Significant site characterization efforts
 - Development of reliable model to project aquifer interactions under current and foreseeable future conditions
 - Coordinated efforts between stakeholders
 - Demonstration of technical and economic feasibility

